Nonparametric likelihood ratio model selection tests between parametric likelihood and moment condition models

نویسندگان

  • Xiaohong Chen
  • Han Hong
  • Matthew Shum
چکیده

We propose a nonparametric likelihood ratio testing procedure for choosing between a parametric (likelihood) model and a moment condition model when both models could be misspecified. Our procedure is based on comparing the Kullback–Leibler Information Criterion (KLIC) between the parametric model and moment condition model. We construct the KLIC for the parametric model using the difference between the parametric log likelihood and a sieve nonparametric estimate of population entropy, and obtain the KLIC for the moment model using the empirical likelihood statistic. We also consider multiple ð42Þ model comparison tests, when all the competing models could be misspecified, and some models are parametric while others are moment-based. We evaluate the performance of our tests in a Monte Carlo study, and apply the tests to an example from industrial organization. r 2007 Elsevier B.V. All rights reserved. JEL classification: C52

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Efficiency of Generalized Likelihood Ratio Tests

The generalized likelihood ratio (GLR) test has been proposed by Fan, Zhang and Zhang (2001) as a generally applicable method to test parametric, semiparametric or nonparametric models against nonparametric alternatives. It is a natural extension of the maximum likelihood ratio test for a parametric model and fully inherits the advantages of classical likelihood ratio tests. Both true likelihoo...

متن کامل

Estimation and Model Selection of Semiparametric Copula-Based Multivariate Dynamic Models Under Copula Misspecification∗

Recently Chen and Fan (2003a) introduced a new class of semiparametric copula-based multivariate dynamic (SCOMDY) models. A SCOMDY model specifies the conditional mean and the conditional variance of a multivariate time series parametrically (such as VAR, GARCH), but specifies the multivariate distribution of the standardized innovation semiparametrically as a parametric copula evaluated at non...

متن کامل

Variable Selection in Semiparametric Regression Modeling By

In this paper, we are concerned with how to select significant variables in semiparametric modeling. Variable selection for semiparametric regression models consists of two components: model selection for nonparametric components and selection of significant variables for the parametric portion. Thus, semiparametric variable selection is much more challenging than parametric variable selection ...

متن کامل

Evaluation of Tests for Separability and Symmetry of Spatio-temporal Covariance Function

In recent years, some investigations have been carried out to examine the assumptions like stationarity, symmetry and separability of spatio-temporal covariance function which would considerably simplify fitting a valid covariance model to the data by parametric and nonparametric methods. In this article, assuming a Gaussian random field, we consider the likelihood ratio separability test, a va...

متن کامل

Variable Selection in Semiparametric Regression Modeling.

In this paper, we are concerned with how to select significant variables in semiparametric modeling. Variable selection for semiparametric regression models consists of two components: model selection for nonparametric components and select significant variables for parametric portion. Thus, it is much more challenging than that for parametric models such as linear models and generalized linear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007